ABSTRACT: Hepatocytes are reportedly susceptible to the injurious effects of oxidants when exposed to toxic substances such as Ethanol. The widespread claims of the medicinal efficacy of chitosan and chitosan nanoparticles have been well documented in literature. Characterization of chitosan and chitosan nanoparticles by FTIR spectroscopy and particle size, evaluate antioxidant properties and antimicrobial activity of chitosan samples. The in vitro antioxidant of samples were assayed by DPPH scavenging activity. The in vivo hepatoprotective effects evaluated in male Wister rats against ethanol induced liver damage in preventive and curative models. The chitosan and chitosan nanoparticles (200 mg/kg body weight (b.w), and silimarin (100 mg/kg b.w) were administered orally in both the studies. Liver injury was induced by 40% ethanol administration (3.76 gm/kg b.w, orally) for 30 days. Both chitosan and chitosan nanoparticles appeared antioxidant activity in DPPH scavenging activity assay, while the chitosan nanoparticles was the more effective one compared with chitosan. The level of plasma aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), GGT, bilirubin, albumin, globulin, total protein, total cholesterol, triglycerides, LDL-cholesterol, HDL-cholesterol and plasma antioxidant state (MDA content and catalase activity) were determined to assay hepatotoxicity. Ethanol administration caused severe hepatic damage in rats as evidenced by elevated plasma AST, ALT, GGT, bilirubin, total cholesterol, triglycerides, LDL-cholesterol and MDA content. The chitosan, chitosan nanoparticles and silimar administration prevented the toxic effect of ethanol on the above plasma parameters in preventive model. The present study concludes that chitosan and chitosan nanoparticles have significant antioxidant and hepatoprotective activity against ethanol induced hepatotoxicity.

Key words: Chitosan, Hepatoprotective, Antioxidant
عنوان الرسالة:
دراسات كيميائية حيوية على الشيتوناز

اسم الباحث:
محمود أحمد عبد الوهاب

الدرجة العلمية:
دكتوراة في العلوم الزراعية

الاسم العلمي:
الكيمياء الحيوية

تاريخ موافقة مجلس الكلية:
2022/1/01

لجنة الإشراف:
أ/ يوسف أمين عشوش

أ/ صلاح منصور عبد الجود

المشرف:
أ. د. يوسف أمين عشوش

كلية الزراعة، جامعة المنوفية

المعناة:
إن خلايا الكبد تتعرض للتآثرات الضارة لمواد المؤكسدة عند تعرضها لمادة سامة مثل الإيثانول. وقد أوضحت نتائج البحوث في كثير من المراجع العلمية فعالية جزيئات النانو شيتوناز والشيتوناز ضد هذا التأثير الضار. وقد امكّن عن طريق التحليل الطيفي FTIR تحديد حجم جسيمات النانوشيتوناز والشيتوناز. مما يساعد في تقسيم النشاط المضاد للميكروبات لعينات الشيتوناز. وتشابها كمضادات الأكسدة. تم تقييم وتحديد التآثرات المرتبطة بالكبد في ذكور الفئران متماثلة في تلف الكبد الناجم عن الإيثانول في النماذج الوقائية والعلاجية، حيث استخدمت جزيئات النانو شيتوناز والشيتوناز (200 ملم مكون من وزن الجسم) و السيليسيرين (1000 ملم مكون من وزن الجسم) عن طريق الفم في المدة مباشرة.

وتم تفعيل إصابات الكبد باستعمال تركيز 40% من الإيثانول (30 مجم/كم من وزن الجسم، عن طريق الفم) لمدة 30 يومًا، وقد أوضحت النتائج عند استخدام جزيئات النانو شيتوناز والشيتوناز نشاطًا مضادًا للأكسدة في اختيار مقاومة الفشل الهرمي DPPH، بينما كانت جزيئات الشيتوناز النانوية أكثر فعالية مقارنة بالشيتوناز العادي في تحسين مستوى DPPH، البيليروبين، البروتين الكلي، الكولسترول الكلي، ALT، AST، GGT، (ALP) و الكالسيوم الكلي، و الكالسيوم، و بدن الإيثانول للفي كيدي شديد دهون الفئران، كما يثبت من ارتفاع مستويات البلازما HDL، LDL، الكولسترول، الكوليسترول الكلي، والدهون في الفئران، وبناء، ALT، AST، WBC، MDA، تناول الشيتوناز والنانو شيتوناز والسيليسيرين مع التأثيرات السلبية للايثانول على معملات البلازما المذكورة أعلاه في النموذج الوقائي. خصصت الدراسة الخلايا إلى أن الجسيمات النانوية للشيتوناز والشيتوناز لها شطاط هام مضاد للأكسدة ووقائي للكبد ضد السمية الكبدية التي يسببها الإيثانول.